资源类型

期刊论文 552

会议视频 9

会议专题 1

年份

2023 32

2022 42

2021 55

2020 35

2019 48

2018 32

2017 36

2016 20

2015 31

2014 24

2013 21

2012 18

2011 18

2010 31

2009 19

2008 13

2007 18

2006 14

2005 11

2004 8

展开 ︾

关键词

疲劳 6

建模 5

仿真技术 4

增材制造 4

混凝土 4

疲劳寿命 4

S-N曲线 3

飞机结构 3

SWAT模型 2

人工智能 2

代理模型 2

仿真 2

力学模型 2

复杂系统 2

建模仿真 2

数值模拟 2

机器学习 2

深度学习 2

腐蚀 2

展开 ︾

检索范围:

排序: 展示方式:

Some remarks on the engineering application of the fatigue crack growth approach under nonzero mean loads

Jorge Alberto Rodriguez DURAN,Ronney Mancebo BOLOY,Rafael Raider LEONI

《机械工程前沿(英文)》 2015年 第10卷 第3期   页码 255-262 doi: 10.1007/s11465-015-0342-1

摘要:

The well-known fatigue crack growth (FCG) curves are two-parameter dependents. The range of the stress intensity factor ?K and the load ratio R are the parameters normally used for describing these curves. For engineering purposes, the mathematical representation of these curves should be integrated between the initial and final crack sizes in order to obtain the safety factors for stresses and life. First of all, it is necessary to reduce the dependence of the FCG curves to only one parameter. ?K is almost always selected and, in these conditions, considered as the crack driving force. Using experimental data from literature, the present paper shows how to perform multiple regression analyses using the traditional Walker approach and the more recent unified approach. The correlations so obtained are graphically analyzed in three dimensions. Numerical examples of crack growth analysis for cracks growing under nominal stresses of constant amplitude in smooth and notched geometries are performed, assuming an identical material component as that of the available experimental data. The resulting curves of crack size versus number of cycles (a vs. N) are then compared. The two models give approximately the same (a vs. N) curves in both geometries. Differences between the behaviors of the (avs. N) curves in smooth and notched geometries are highlighted, and the reasons for these particular behaviors are discussed.

关键词: fatigue crack propagation modeling     life prediction     mean stress effects    

Dynamic crack propagation in plates weakened by inclined cracks: an investigation based on peridynamics

A. SHAFIEI

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 527-535 doi: 10.1007/s11709-018-0450-1

摘要: Peridynamics is a theory in solid mechanics that uses integral equations instead of partial differential equations as governing equations. It can be applied to fracture problems in contrast to the approach of fracture mechanics. In this paper by using peridynamics, the crack path for inclined crack under dynamic loading were investigated. The peridynamics solution for this problem represents the main features of dynamic crack propagation such as crack bifurcation. The problem is solved for various angles and different stress values. In addition, the influence of geometry on inclined crack growth is studied. The results are compared with molecular dynamic solutions that seem to show reasonable agreement in branching position and time.

关键词: peridynamics     inclined crack     dynamic fracture     crack branching    

Crack propagation with different radius local random damage based on peridynamic theory

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1238-1248 doi: 10.1007/s11709-021-0695-y

摘要: Drawing from the advantages of Classical Mechanics, the peridynamic theory can clarify the crack propagation mechanism by an integral solution without initially setting the factitious crack and crack path. This study implements the peridynamic theory by subjecting bilateral notch cracked specimens to the conditions of no local damage, small radius local damage, and large radius local damage. Moreover, to study the effects of local stochastic damage with different radii on the crack propagation path and Y-direction displacement, a comparison and contact methodology was adopted, in which the crack propagation paths under uniaxial tension and displacement in the Y-direction were compared and analyzed. This method can be applied to steel structures under similar local random damage conditions.

关键词: peridynamics     stochastic damage     bilateral notch crack    

Creep-fatigue crack growth behavior in GH4169 superalloy

Dianyin HU, Xiyuan WANG, Jianxing MAO, Rongqiao WANG

《机械工程前沿(英文)》 2019年 第14卷 第3期   页码 369-376 doi: 10.1007/s11465-018-0489-7

摘要: This study aims to examine the crack growth behavior of turbine disc GH4169 superalloy under creep-fatigue loading. Crack growth experiments were performed on compact tension specimens using trapezoidal waveform with dwell time at the maximum load at 650 °C. The crack growth rate of GH4169 superalloy significantly increased with dwell time. The grain boundaries oxidize during the dwell process, thereby inducing an intergranular creep-fatigue fracture mode. In addition, testing data under the same dwell time showed scattering at the crack growth rate. Consequently, a modified model based on the Saxena equation was proposed by introducing a distribution factor for the crack growth rate. Microstructural observation confirmed that the small grain size and high volume fraction of the d phase led to a fast creep-fatigue crack growth rate at 650 °C, thus indicating that two factors, namely, fine grain and presence of the d phase at the grain boundary, increased the amount of weakened interface at high temperature, in which intergranular cracks may form and propagate.

关键词: crack growth rate     creep-fatigue     GH4169 superalloy     CT specimen     dwell time    

Concurrent fatigue crack growth simulation using extended finite element method

Zizi LU, Yongming LIU,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 339-347 doi: 10.1007/s11709-010-0078-2

摘要: In this paper, a concurrent simulation framework for fatigue crack growth analysis is proposed using a novel small time scale model for fatigue mechanism analysis and the extended finite element method (X-FEM) for fatigue crack growth simulation. The proposed small time scale fatigue model does not require the cycle counting as those using the classical fatigue analysis methods and can be performed concurrently with structural/mechanical analysis. The X-FEM greatly facilitates crack growth simulation without remeshing requirements ahead of the crack tip as in the classical finite element method. The basic concept and theory of X-FEM was briefly introduced and numerical predictions of stress intensity factors are verified with reference solutions under both uniaxial and multiaxial loadings. The small time scale fatigue model is integrated into the numerical simulation algorithm for concurrent fatigue crack growth analysis. Model predictions are compared with available experimental observations for model validation.

关键词: small time scale model     extended finite element method (X-FEM)     crack growth     multiaxial    

Elasto-plastic fatigue crack growth analysis of plane problems in the presence of flaws using XFEM

Sachin KUMAR,A. S. SHEDBALE,I. V. SINGH,B. K. MISHRA

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 420-440 doi: 10.1007/s11709-015-0305-y

摘要: In this paper, elasto-plastic XFEM simulations have been performed to evaluate the fatigue life of plane crack problems in the presence of various defects. The stress-strain response of the material is modeled by Ramberg-Osgood equation. The von-Mises failure criterion has been used with isotropic hardening. The -integral for two fracture modes (mode-I and mode-II) is obtained by decomposing the displacement and stress fields into their symmetric and antisymmetric parts, then individual stress intensity factors are extracted from -integral. The fatigue life obtained by EPFM is found quite close to that obtained by LEFM.

关键词: XFEM     von-Mises yield criterion     isotropic hardening     fatigue crack growth     J-integral    

Fatigue crack growth behavior of a 170 mm diameter stainless steel straight pipe subjected to combined

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 905-913 doi: 10.1007/s11709-021-0683-2

摘要: In a nuclear powerplant, the rotary equipment, such as a pump directly fitted with hanger in the piping system, experiences torsional and bending loads. Higher crack growth rate occurs because of this torsional load in addition to the bending load. Hence, it is necessary to study the fatigue behavior of piping components under the influence of combined torsional and bending load. In this study, experimental fatigue life evaluation was conducted on a notched stainless steel SA312 Type 304LN straight pipe having an outer diameter of 170 mm. The experimental crack depth was measured using alternating current potential drop technique. The fatigue life of the stainless steel straight pipe was predicted using experiments, Delale and Erdogan method, and area-averaged root mean square–stress intensity factor approach at the deepest and surface points of the notch. Afterward, the fatigue crack growth and crack pattern were discussed. As a result, fatigue crack growth predicted using analytical methods are in good agreement with experimental results.

关键词: fatigue life     Delale and Erdogan method     RMS–SIF approach     stainless steel     torsion and bending load     fatigue crack growth    

Lamb wave propagation modeling for structure health monitoring

Xiaoyue ZHANG, Shenfang YUAN, Tong HAO

《机械工程前沿(英文)》 2009年 第4卷 第3期   页码 326-331 doi: 10.1007/s11465-009-0045-6

摘要: This study aims to model the propagation of Lamb waves used in structure health monitoring. A number of different numerical computational techniques have been developed for wave propagation studies. The local interaction simulation approach, used for modeling sharp interfaces and discontinuities in complex media (LISA/SIM theory), has been effectively applied to numerical simulations of elastic wave interaction. This modeling is based on the local interaction simulation approach theory and is finally accomplished through the finite elements software Ansys11. In this paper, the Lamb waves propagating characteristics and the LISA/SIM theory are introduced. The finite difference equations describing wave propagation used in the LISA/SIM theory are obtained. Then, an anisotropic metallic plate model is modeled and a simulating Lamb waves signal is loaded on. Finally, the Lamb waves propagation modeling is implemented.

关键词: Lamb wave     modeling     LISA/SIM theory     finite difference equation     finite element    

Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements

Ibrahim ONIFADE, Yared DINEGDAE, Björn BIRGISSON

《结构与土木工程前沿(英文)》 2017年 第11卷 第3期   页码 257-269 doi: 10.1007/s11709-017-0410-1

摘要: In this paper, a hierarchical approach is proposed for the evaluation of fatigue cracking in asphalt concrete pavements considering three different levels of complexities in the representation of the material behaviour, design parameters characterization and the determination of the pavement response as well as damage computation. Based on the developed hierarchical approach, three damage computation levels are identified and proposed. The levels of fatigue damage analysis provides pavement engineers a variety of tools that can be used for pavement analysis depending on the availability of data, required level of prediction accuracy and computational power at their disposal. The hierarchical approach also provides a systematic approach for the understanding of the fundamental mechanisms of pavement deterioration, the elimination of the empiricism associated with pavement design today and the transition towards the use of sound principles of mechanics in pavement analysis and design.

关键词: fatigue cracking     energy based     crack initiation     mechanistic approach     pavement analysis    

Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review

B. J. WANG, D. K. XU, S. D. WANG, E. H. HAN

《机械工程前沿(英文)》 2019年 第14卷 第1期   页码 113-127 doi: 10.1007/s11465-018-0482-1

摘要: The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.

关键词: Mg alloys     fatigue behavior     microstructure     crack initiation     deformation mechanism    

An investigation on prevalent strategies for XFEM-based numerical modeling of crack growth in porous

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 914-936 doi: 10.1007/s11709-021-0750-8

摘要: Crack growth modeling has always been one of the major challenges in fracture mechanics. Among all numerical methods, the extended finite element method (XFEM) has recently attracted much attention due to its ability to estimate the discontinuous deformation field. However, XFEM modeling does not directly lead to reliable results, and choosing a strategy of implementation is inevitable, especially in porous media. In this study, two prevalent XFEM strategies are evaluated: a) applying reduced Young’s modulus to pores and b) using different partitions to the model and enriching each part individually. We mention the advantages and limitations of each strategy via both analytical and experimental validations. Finally, the crack growth is modeled in a natural porous media (Fontainebleau sandstone). Our investigations proved that although both strategies can identically predict the stress distribution in the sample, the first strategy simulates only the initial crack propagation, while the second strategy could model multiple cracks growths. Both strategies are reliable and highly accurate in calculating the stress intensity factor, but the second strategy can compute a more reliable reaction force. Experimental tests showed that the second strategy is a more accurate strategy in predicting the preferred crack growth path and determining the maximum strength of the sample.

关键词: numerical modeling     extended finite element method     porous media     crack growth     stress intensity factor    

Simulation of cohesive crack growth by a variable-node XFEM

Weihua FANG, Jiangfei WU, Tiantang YU, Thanh-Tung NGUYEN, Tinh Quoc BUI

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 215-228 doi: 10.1007/s11709-019-0595-6

摘要: A new computational approach that combines the extended finite element method associated with variable-node elements and cohesive zone model is developed. By using a new enriched technique based on sign function, the proposed model using 4-node quadrilateral elements can eliminate the blending element problem. It also allows modeling the equal stresses at both sides of the crack in the crack-tip as assumed in the cohesive model, and is able to simulate the arbitrary crack-tip location. The multiscale mesh technique associated with variable-node elements and the arc-length method further improve the efficiency of the developed approach. The performance and accuracy of the present approach are illustrated through numerical experiments considering both mode-I and mixed-mode fracture in concrete.

关键词: extended finite element method     cohesive zone model     sign function     crack propagation    

Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM

Himanshu PATHAK,Akhilendra SINGH,I.V. SINGH,S. K. YADAV

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 359-382 doi: 10.1007/s11709-015-0304-z

摘要: This paper deals with the fatigue crack growth simulations of three-dimensional linear elastic cracks by XFEM under cyclic thermal load. Both temperature and displacement approximations are extrinsically enriched by Heaviside and crack front enrichment functions. Crack growth is modelled by successive linear extensions, and the end points of these linear extensions are joined by cubic spline segments to obtain a modified crack front. Different crack geometries such as planer, non-planer and arbitrary spline shape cracks are simulated under thermal shock, adiabatic and isothermal loads to reveal the sturdiness and versatility of the XFEM approach.

关键词: 3-D cracks     fatigue life     Paris law     thermal load     XFEM    

大型重载支承轴的疲劳裂纹时间序列诊断分析

李学军,宾光富,王裕清

《中国工程科学》 2006年 第8卷 第4期   页码 50-53

摘要:

大型重载支承轴隐蔽部位由于发生不可观测的突发性疲劳断裂,严重影响正常生产,给企业带来重大经济损失;分析这类支承轴的结构特点与振动信号特征之间的关系,运用时序分析方法对振动信号进行建模,并采用残差σa2和归一化残差平方和NRSS作为识别疲劳裂纹状态的特征指标,有效诊断出了支承轴的疲劳裂纹程度。实验结果表明,采用σa2和NRSS作为特征指标的时序分析方法对大型重载支承轴隐蔽部位的疲劳裂纹状态进行诊断,比常规的时频幅值特征分析法更为敏感有效、简便易行,且具备很强的实用性。

关键词: 大型重载     支承轴     隐蔽部位     疲劳裂纹     时间序列    

A FEniCS implementation of the phase field method for quasi-static brittle fracture

HIRSHIKESH, Sundararajan NATARAJAN, Ratna Kumar ANNABATTULA

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 380-396 doi: 10.1007/s11709-018-0471-9

摘要: In the recent years, the phase field method for simulating fracture problems has received considerable attention. This is due to the salient features of the method: 1) it can be incorporated into any conventional finite element software; 2) has a scalar damage variable is used to represent the discontinuous surface implicitly and 3) the crack initiation and subsequent propagation and branching are treated with less complexity. Within this framework, the linear momentum equations are coupled with the diffusion type equation, which describes the evolution of the damage variable. The coupled nonlinear system of partial differential equations are solved in a ‘staggered’ approach. The present work discusses the implementation of the phase field method for brittle fracture within the open-source finite element software, FEniCS. The FEniCS provides a framework for the automated solutions of the partial differential equations. The details of the implementation which forms the core of the analysis are presented. The implementation is validated by solving a few benchmark problems and comparing the results with the open literature.

关键词: phase field method     FEniCS     brittle fracture     crack propagation     variational theory of fracture    

标题 作者 时间 类型 操作

Some remarks on the engineering application of the fatigue crack growth approach under nonzero mean loads

Jorge Alberto Rodriguez DURAN,Ronney Mancebo BOLOY,Rafael Raider LEONI

期刊论文

Dynamic crack propagation in plates weakened by inclined cracks: an investigation based on peridynamics

A. SHAFIEI

期刊论文

Crack propagation with different radius local random damage based on peridynamic theory

期刊论文

Creep-fatigue crack growth behavior in GH4169 superalloy

Dianyin HU, Xiyuan WANG, Jianxing MAO, Rongqiao WANG

期刊论文

Concurrent fatigue crack growth simulation using extended finite element method

Zizi LU, Yongming LIU,

期刊论文

Elasto-plastic fatigue crack growth analysis of plane problems in the presence of flaws using XFEM

Sachin KUMAR,A. S. SHEDBALE,I. V. SINGH,B. K. MISHRA

期刊论文

Fatigue crack growth behavior of a 170 mm diameter stainless steel straight pipe subjected to combined

期刊论文

Lamb wave propagation modeling for structure health monitoring

Xiaoyue ZHANG, Shenfang YUAN, Tong HAO

期刊论文

Hierarchical approach for fatigue cracking performance evaluation in asphalt pavements

Ibrahim ONIFADE, Yared DINEGDAE, Björn BIRGISSON

期刊论文

Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review

B. J. WANG, D. K. XU, S. D. WANG, E. H. HAN

期刊论文

An investigation on prevalent strategies for XFEM-based numerical modeling of crack growth in porous

期刊论文

Simulation of cohesive crack growth by a variable-node XFEM

Weihua FANG, Jiangfei WU, Tiantang YU, Thanh-Tung NGUYEN, Tinh Quoc BUI

期刊论文

Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM

Himanshu PATHAK,Akhilendra SINGH,I.V. SINGH,S. K. YADAV

期刊论文

大型重载支承轴的疲劳裂纹时间序列诊断分析

李学军,宾光富,王裕清

期刊论文

A FEniCS implementation of the phase field method for quasi-static brittle fracture

HIRSHIKESH, Sundararajan NATARAJAN, Ratna Kumar ANNABATTULA

期刊论文